If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4n^2+36n=0
a = 4; b = 36; c = 0;
Δ = b2-4ac
Δ = 362-4·4·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-36}{2*4}=\frac{-72}{8} =-9 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+36}{2*4}=\frac{0}{8} =0 $
| 2(4w9+7=62 | | 24÷3/4=f | | k+5/3=-3 | | a-11=-29 | | -17=10+3x | | 6+n/4=4 | | x2-2x-3=-3 | | (96+2p)=(80-3p) | | 11/4=77x | | 11=9+r/6 | | -128=10n-8 | | -9=-9+k/1 | | (x-2)/(x+1)=0.5 | | 21=-6+9x | | 1/5y=15. | | −0.65−5=0.35p | | r−22/−6=28 | | 20m+28=7480 | | 2(6x+7x)=15 | | 3(x+1)^3/4-7=17 | | b+524=–456 | | 14x+28=24 | | 14c+25=19 | | 3y=-12y=y | | g/30=-600 | | g/30=600 | | 78=2(d-48) | | 3•(x-4)=2• | | 78=2(d−48) | | 20g=600 | | 41-4u=-35 | | 2•(3x-8)=3•x+5 |